On integrable matrix product operators with bond dimensionD= 4
نویسندگان
چکیده
منابع مشابه
Multidimensional Integrable Schrödinger Operators With Matrix Potential
The Schrödinger operators with matrix rational potential, which are D-integrable, i.e. can be intertwined with the pure Laplacian, are investigated. Corresponding potentials are uniquely determined by their singular data which is a configuration of the hyperplanes in C with prescribed matrices. We describe some algebraic conditions (matrix locus equations) on these data, which are sufficient fo...
متن کاملThermal evolution of the Schwinger model with matrix product operators
M. C. Bañuls, K. Cichy, J. I. Cirac, K. Jansen, and H. Saito Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany Goethe-Universität, Institut für Theoretische Physik, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main, Germany NIC, DESY, Platanenallee 6, D-15738 Zeuthen, Germany Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Polan...
متن کاملMatrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms.
Current descriptions of the ab initio density matrix renormalization group (DMRG) algorithm use two superficially different languages: an older language of the renormalization group and renormalized operators, and a more recent language of matrix product states and matrix product operators. The same algorithm can appear dramatically different when written in the two different vocabularies. In t...
متن کاملGeneralization of the matrix product ansatz for integrable chains
We present a general formulation of the matrix product ansatz for exactly integrable chains on periodic lattices. This new formulation extends the matrix product ansatz present on our previous articles ( F. C. Alcaraz and M. J. Lazo J. Phys. A: Math. Gen. 37 (2004) L1-L7 and J. Phys. A: Math. Gen. 37 (2004) 4149-4182.) In [1] (to which we refer hereafter as I) and [2], we formulate a matrix pro...
متن کاملThe spectral properties of differential operators with matrix coefficients on elliptic systems with boundary conditions
Let $$(Lv)(t)=sum^{n} _{i,j=1} (-1)^{j} d_{j} left( s^{2alpha}(t) b_{ij}(t) mu(t) d_{i}v(t)right),$$ be a non-selfadjoint differential operator on the Hilbert space $L_{2}(Omega)$ with Dirichlet-type boundary conditions. In continuing of papers [10-12], let the conditions made on the operator $ L$ be sufficiently more general than [11] and [12] as defined in Section $1$. In this paper, we estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Mechanics: Theory and Experiment
سال: 2015
ISSN: 1742-5468
DOI: 10.1088/1742-5468/2015/01/p01006